Nastaaligh Handwritten Word Recognition Using a Continuous-density Variable-duration Hmm
نویسندگان
چکیده
فوس لا اذ ه يف مدقن ثحب ماظن اً ً لاما آ لع فرعتلل ى تاملآ ) ةي سرافلا ة يطخلا قيلعت سن ( ب ا مادختس ةر يغتملا تلااحلا لوطو ةرمتسملا تادهاشملا فثا كتو يفخلا فوآرام ليدوم (CDVDHMM) . يفو ة لحرم لع لوصحلاو زيو نلا ءا غلإو يرنيا ب تا يلمع د عب ة مدقملا ميد قتلا ى ءازجلأا لا مادخت سا مت ي ةلصتم ةديدج ةيمزراوخ رئاسو طاقنلاو طباهلاو دعاصلا فشكل ءازجلأا يسيئرلا ريوصتلا نم اهبطشو ةيوناثلا . مث ذيفنت متي ةيمزراوخ ديدج عيطقت ة يلع ساسأ نيتيدعاسم نيتيلمعو يولعلا روتناآ ليلحت . ضرغلاو نم ذ ه ه ةيمزراوخلا وه نأ نوكتلا لإا ردق كانه ناكم ع ةلكشم عيطقتلا مد . ةر يغتملا تلااحلا لوط صيصخت مت دقو د ئازلا ع يطقتلا ة لازلإ . لع لو صحلا د عبو ى ني ميلا ن م ب يترتلا لإ ى مت ي را سيلا ءار جإ ل يدوم CDVDHMM ةجتانلا ةيتحتلا فورحلا رخؤمب . و لع لمتشت يتلا ةينامثلا صئاصخلا ى يروف فيصاوت ة صئا صخلا دد عو ة ثلاثلا ةي ساسلأا ي تلا دخت ست ي ف زو مرلا هذ ه ضر عل م ءاو جأ صئا صخلا . و د عبلا ر يغتملا ريغ سايقلا رييغتل ةبسنلاب يصئاصخلا . نإ لع لمتشت جذو منلا اذ ه يف تلااحلا ى فرحأ ةصلاخ ) نود ب أ ءاز ج ة يوناث ( ةد عو لاك شأ ي ف ة يبيآرت بولسأ قيلعت سنلاب ة باتكلا . ف ه يلعو إ مت ي ل يدوملا مي لعت ن بولسلأ ةجاحلا نودو ةلوهسب يونا ثلا ريد قتلا . لع لوصحلا مت ي مي لعتلا ة لحرم ي فو ى تا نوكم نم دد ع سوماقلا نم يقابلاو ةيميلعتلا ريواصتلا ةعومجم نم ليدوملا ، لع لوصحلا متي يلاتلابو ى ةخسن ةيمزراوخ فيرعتلل ةلدّعملا يبرتيو . تو ذه انيطع ه ةيمزراوخلا لضفأ ما ع راسم نم ر ثآلأ ةروص يذ لا ع قاوملا ذخأي او لأ لاكش لأل ةفلتخملا ةر يغتملا تلااحلا لوط دناسيو ةيتحت تلااحآ فرح . و نّـ يبت د ق أ ي تلا تارا بتخلاا ن لع تيرجا ى تاذ سوماقو ةيطخ جذامن 50 مدختسملا بولسلال ةديج جئاتن تمدق ،ةملآ .
منابع مشابه
Holistic Farsi handwritten word recognition using gradient features
In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملAlternatives to Variable Duration HMM in Handwriting Recognition
A successful handwritten word recognition (HWR) system using Variable Duration Hidden Markov Model (VDHMM) and the PDHMM strategy is easy to implement. The central theme of this paper is to show that if the duration statistics are computed, it could be utilized to implement an MD-HMM approach for better experimental results. This paper also describes a PD-HMM based HWR system where the duration...
متن کاملA comparison between continuous and discrete density hidden Markov models for cursive handwriting recognition
This paper presents the results of the comparison of continuous and discrete density Hidden Markov Models (HMMs) used for cursive handwriting recognition. For comparison, a subset of a large vocabulary (1000 word), writer-independent online handwriting recognition system for word and sentence recognition was used, which was developed at Duisburg University. This system has some unique features ...
متن کاملHMM Based Approach for Handwritten Arabic Word Recognition Using the IFN/ENIT- Database
An offline recognition system for Arabic handwritten words is presented. The recognition system is based on a semi-continuous 1-dimensional HMM. From each binary word image normalization parameters were estimated. First height, length, and baseline skew are normalized, then features are collected using a sliding window approach. This paper presents these methods in more detail. Some parameters ...
متن کاملArabic Handwritten Word Recognition Using HMMs with Explicit State Duration
We describe an offline unconstrained Arabic handwritten word recognition system based on segmentation-free approach and discrete hidden Markov models (HMMs) with explicit state duration. Character durations play a significant part in the recognition of cursive handwriting. The duration information is still mostly disregarded in HMM-based automatic cursive handwriting recognizers due to the fact...
متن کامل